The Infamous El Guapo

32-bar jig for three couples in a four-couple longwise set

Bars

Description

1-4 1 st couple cast off one place, 2 nd couple step up on bars 1-2.
All three couples set.
5-8 $\quad 1$ st couple dance a half figure of eight round 2 nd couple.
9-16 2nd, 1st and 3rd couples dance an arandel, without the polite turn, finishing with 1st couple right hands joined and left hands joined with first corners in a diagonal line.

17-24 1st couple and first corners balance in line,
1 st couple turn with the right hand to a diagonal line with second corners.
1 st couple and second corners balance in line,
1 st couple turn with the right hand to face out on own sides.
25-32 2nd, 1st and 3rd couples dance reels of three on own sides.
2 nd and 1 st men and 3 rd and 1 st women pass by the right to begin.
Repeat, having passed a couple.
After the second turn of the dance:
1-4 Original 1st couple cast off one place, 3rd couple step up on bars 1-2.
Original 1st couple set.
Note: the arandel, pronounced "are-an-dell", is a form of rights and lefts for three couples in 8 bars, and with 1st couple beginning on opposite sides is normally danced as follows:

1-2 2nd, 1st and 3rd couples, giving right hands to partner, cross over to change sides.
3-4 2nd man and 3rd woman set to each other.
2nd woman and 1st man, giving left hands, change places on the sideline. 1 st woman and 3 rd man, giving left hands, change places on the sideline.
5-6 All three couples, giving right hands to the dancer opposite, cross over to change sides.
7-8 2nd man and 3rd woman set.
1st man and 2nd woman, giving left hands, change places on the sideline. 3rd man and 1st woman, giving left hands, change places on the sideline.
All three couples are now back in their original places.
On bar 8,1 st couple pull back by the left to dance into place (polite turn).

ARANDEL $21_{\times 3}$ \mathbf{X}_{R}			$\begin{gathered} { }^{(1)-\sqrt{-2]}{ }^{(3)} \mathbf{S}} \\ \mathbf{X}_{\mathrm{L}} \mathbf{X}_{\mathrm{L}} \\ \mathbf{S} \text { (2) }{ }^{(3)-\sqrt{1}} \end{gathered}$

Devised by Tom Halpenny, September 2016.

